SPECTROSCOPIC CHARACTERISTICS OF HUMATES ISOLATED FROM DIFFERENT SOIL TYPES

NADĚŽDA FASUROVÁ¹, LUBICA POSPÍŠILOVÁ²

¹Brno University of Technology, Faculty of Chemistry, Purkyňova 118, 612 00 Brno, Czech Republic.

²Mendel University of Agriculture and Forestry, Soil Science, Microbiology and Plant Nutrition, Zemědělská 1, 613 00 Brno, Czech Republic.

Aims of this project

- The aim of our work was to compare spectroscopic properties of soil humates isolated from different soil matrices (Haplic Cambisol, Leptic Cambisol, Eutric Cambisol, Haplic Chernozem). The optical methods (UV-VIS and SFS) in this project were used.
- Then we compared the type of land use (arable soil x grassland) in Eutric Cambisol samples.

Fluorescence of humic substances

- State transition of electrons from excited singlet state to basic level of singlet (light emission). Transition is permitted. (~ns)
- Photoluminescence: for the excitation Xe lamp or laser are used.
- Excitation and emission wavelength can be chosen and set by monochromators. Excitation wavelength is lower than emission wavelength, emission wavelength corresponds to lower energy.
- Measurement of liquid or solid samples. (HK a FK in solution)
- Fluorescent molecules (with conjugated double bond system, aromatic substances)
- Humic substances (phenolic compounds, aromatic rings with amino groups, hydroxyl groups)-mixture of these substances.
- Comparing fluorescence peaks with peaks of pure substances or with standards (IHSS)

Spectrofluorimeter scheme

Materials and methods:

Czech soil samples, 4 subtypes of Cambisols, 1 Chernozem Type of land use: arable soil x grassland Eutric Cambisol

• Localities:

- Leptic Cambisol=Ocmanice
- Haplic Cambisol=Náměšť
- Eutric Cambisol 1, 2=Vatín
- Haplic Chernozem=Praha, Ruzyně

www.mapy.cz

Materials and methods

- Isolation of HA was made according to the IHSS method (0.5 M NaOH)
- Sodium humates were prepared from HA and titration to pH=7 (dialyzation MWCO 3500, lyophilization at -50°C)
- Samples for UV-Vis: HS extracts were made in the mixture of 0.1 $M Na_4P_2O_7$ and 0.1M NaOH
- Samples for SFS: dissolving of humates in Mili-Q water, c=50 mg/l
- Elemental analysis (C, H, N, O contents) of isolated HA was kindly made in Engineering Test Institute Brno.
- We determined total carbon content, fractional composition, and humification degree of soil humates.

Materials and methods

- UV-VIS-spectrometerVarian Cary 50 Probe, glass fiber, scan range 300 - 700 nm, (MUAF).
- SFS-Spectrofluorimeter Aminco Bowman Series 2, scan range 200-600 nm, Δλ = (λ_{em.} - λ_{ex.}) = 55 nm, emission mode, 90° angle geometry, temperature 20 °C, bandpass: 4 nm, voltage: 1040 V, (BUT FCH)

Total organic carbon, humification degree

- TOC= was determined by short oxidimetric titration method by Nelson and Sommers (1982).
- Humification degree [HD] was calculated by using this equation:

$$HD = \frac{\sum HA * 100}{TOC} [\%]$$

by Orlov (1985)

where: ΣHA=humic acid content, TOC=total organic carbon content

Colour and fluorescence indexes

<u>Colour index:</u>
 Q4/6= A(465)/A(665) nm,
 by Orlov (1985), Podlešáková (1992)

 Fluorescence index: F=RFI(468)/RFI(522) nm , as a ratio of secondary and main peak

Table1 Fractional composition of soil samples, values of colour indexes and fluorescence indexes

Soil types	TOC [%]	HS [mg/kg]	HA [mg/kg]	FA [mg/kg]	HA/FA	HD [%]	Q _{4/6}	F
Leptic Cambisol	1.32	4.14	1.44	2.7	0.4	9.0	9.1	0.64
Haplic Cambisol	1.62	4.65	1.6	3.0	0.54	12.1	5.7	0.72
Eutric Cambisol 1- arable	1.76	6.8	1.8	5.0	0.5	10.1	8.1	0.57
Eutric Cambisol 2- grassland	2.1	7.6	2.9	4.7	0.6	13.8	8.3	0.94
Haplic Chernozem	1.88	5.3	2.9	2.4	1.21	15.4	5.2	0.58

Results

- The highest TOC content had Eutric Cambisol 2 (grassland)
- The highest HA content had Eutric Cambisol
 2 and Haplic Chernozem
- The highest of HD values had Haplic Chernozem, the lowest HD values had Leptic Cambisol
- HS quality in grassland soil sample was higher than in arable soil (E. Cambisol)

Table 2 Ash free elemental analysis of soil humic acids (in atomic %).

Sample	C [%]	H [%]	N [%]	O [%]	Ash [%]
Leptic Cambisol	33.45	47.44	3.07	16.05	1.7
Haplic Cambisol	34.20	46.16	3.05	16.59	4.1
Eutric Cambisol 1(arable)	32.73	46.48	2.52	18.27	6.2
Eutric Cambisol 2 (grassy)	35.59	45.89	2.64	15.88	8.4
Haplic Chernozem	35.35	40.44 Humic Substances , Šoporňa 1317.	in Ecosystems 9.2009 Slovakia	21.76	1.31

Samples: humic substances extracts were prepared in mixture 0.1M sodium pyrophosphate and 0.1M NaOH Humic Substances in Ecosystems 8, Soporna 13.-17.9.2009 Slovakia

c= 50 mg/l

Results

- All samples had main peak at emission 522 nm ($\Delta\lambda$ =55 nm)
- Highest rel. intensity of fluorescence (RFI) at 522 nm had sample Haplic Chernozem
- Lowest rel. intensity of fluorescence (RFI) at 522 nm had sample Leptic Cambisol
- Arable soil humate (E. Cambisol 1) had higher RFI at higher wavelengths than grassland soil humate (E. Cambisol 2)

Results and disscussion

•Fig. 4 The dependence of fluorescence index on carbon content of soil humates (4 samples), R=0.99

 Fig.3 Correlation between fluorescence index and total organic carbon content of soil humates (4 samples), R=0.96

•Fig. 5 The dependence colour index on humus content of soil humates Humic Substances in Ecosystems 8, (Apsamples), 2009 Dog Bia

Conclusion

- Optical properties are influenced by soil type and humus fractional composition. In this study colour indexes and fluorescence indexes by UV-Vis and SFS methods were determined. The highest quality and humification degree had Haplic Chernozem. The lowest quality had Eutric Cambisol (arable).
- From SFS measurement was evident that all samples had the same main fluorophore at excitation 467 nm a emission 522 nm ($\Delta\lambda$ =55 nm). The difference between the type of land use (arable, grassland) in the shape of the spectra was found. Linear correlations between TOC and F, between F and C content and between colour index Q4/6 and humus content were determined.

Acknowledgement

• This work has been supported by Grant Agency of the Czech Republic Project No.104/03/D135, by the Project NAZVA No. QH72039 and NAZVA QH81200.

References

- Hayes M. H. B., Malcolm R. M. Consideration of composition and aspects of structures of humic substances, in: Clapp C. E. (Eds.), Humic substances and chemical contaminants C.E.Clapp (Eds.), Soil Sci of America, Madison (1997).
- Milori D. M. B. P., Martin-Neto L., Bayer C., Mielniczuk J., Bagnato V.S. Humification degree of soil humic acid determined by

fluorescence spectroscopy. Soil Science (2002) 167, 11: 739-749.

- Fasurová, N., Čechlovská, H., Kučerík, J., A comparative study of south moravian lignite and standards IHSS humic acids'optical and colloidal properties, Petroleum & Coal (2006) 48 2: 39-47.
- Pospíšilová L., Fasurová N., Barančíková G., Liptaj T., Spectral characteristics of humic acids isolated from south Moravian lignite and soils. Petroleum&Coal (2008) 50, 2: 30-36.
- Alberts J. J., Takács M., Total luminescence spectra of IHSS standard and reference fulvic acids, humic acids and natural organic matter: comparison of aquatic and terrestrial source terms, Organic Geochemistry (2004) 35, 3: 243-256.

References

- Senesi N., Miano T. M., Provenzano M. R., Brunetti G., Characterization, differentiation and classification of humic substances by fluorescence spectroscopy, Soil Science (1991) 152, 4: 259-271.
- Patra D., Mishra A. K., Total synchronous fluorescence scan spectra of petroleum products, Anal. Bioanal. Chem. (2002) 373: 304-309
- Peňa-Méndez E. M., Havel J., Patočka J., Humic substances-compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. J. Appl. Biomed (2005) 3: 13-24.
- Podlešáková, E.: Rozbory půd, vod a rostlin, Praha, VÚMOP, 1992.
- Chen J., LeBoeuf E. J., Dai S., Gu B., Fluorescence spectroscopic studies of natural organic matter fractions, Chemosphere (2003) 50: 639-647.
- Nelson D.W., Sommers L.E. Total carbon, organic carbon, and organic matter, in: Page A.L., Miller R.H. and Keeney D.R. (Eds.), Method of soil analysis, Part 2, ASA Publ.., Madison, Wisconsin, 1982.
- Orlov D. S.: Chimija počv, Soil Chemistry, Moscow 376, 1985.

Thank you for your attention!

