
Organic matter content as a simple indicator of alluvial soils development

Adam Michalski Nicolaus Copernicus University Institute of Geography Department of Soil Science Toruń, Poland

The aim of the study

- aspect of the main topic Anthropogenic changes of soil cover on the Vistula river floodplain between Toruń and Bydgoszcz:
 - transformations of soil organic matter caused by human activity (agricultural use of land),
 - transformations of soil organic matter in floodplain soils influenced to inundation (*flooded area*) and with absence of this process (*non-flooded area*)

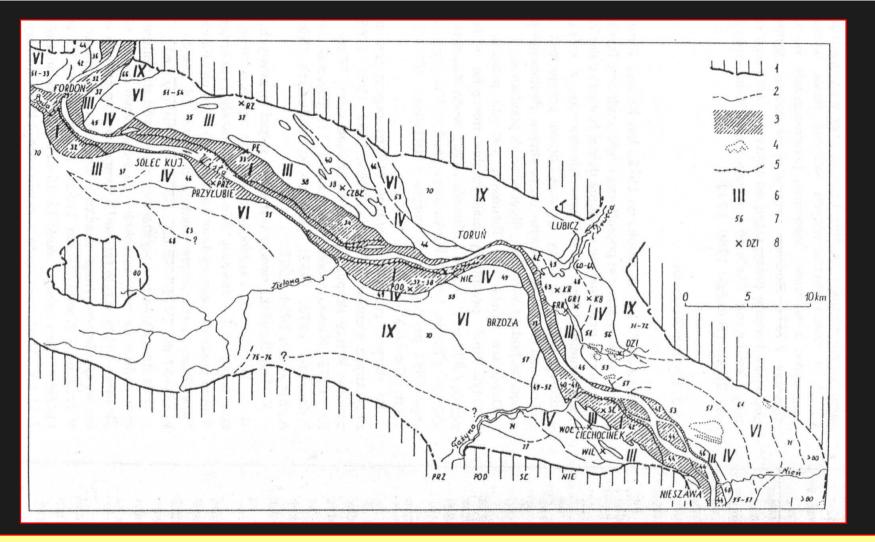
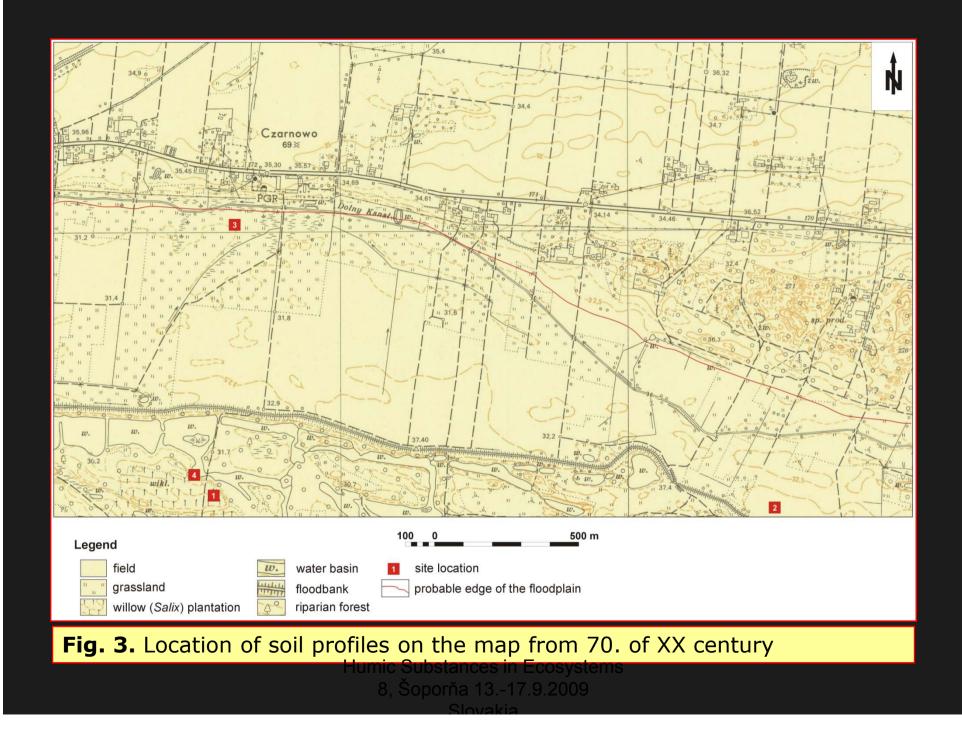


Fig. 1. Terraces in the Toruń Basin (Tomczak 1982)

1- the edge of moraine plateau , 2 – edges of river terraces, 3 – flooplain (terrace I),

- 4 melting depressions, 5 floodbanks, 6 terraces numbers, 7 altitude (m a.s.l.),
 8 dated sites:
- DZI Dzikowo, KB Kopańskie Bagno, GR I i GR II Grabowiec I i II, CZBŁ- Czarne Błota,
- RZ Rzęczkowo, WOŁ Wołuszewo, WIL Wilkowyje, KR Krusz, PE Pędzewo,
- PRZ Przyłubie, PODnie Podgórz, Słn-ESłoński, NIE Ś Nieszawa 17.9.2009 Slovakia

Fig. 2. Location of the study area



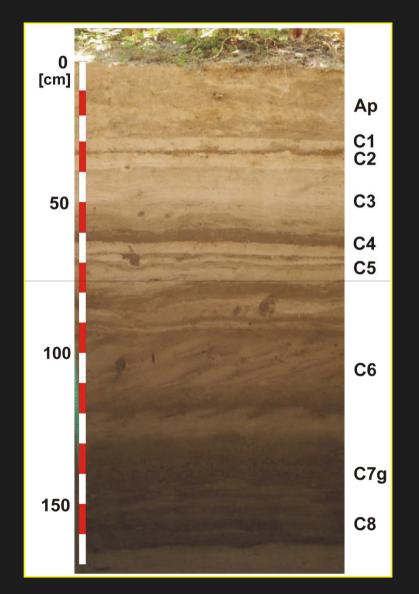


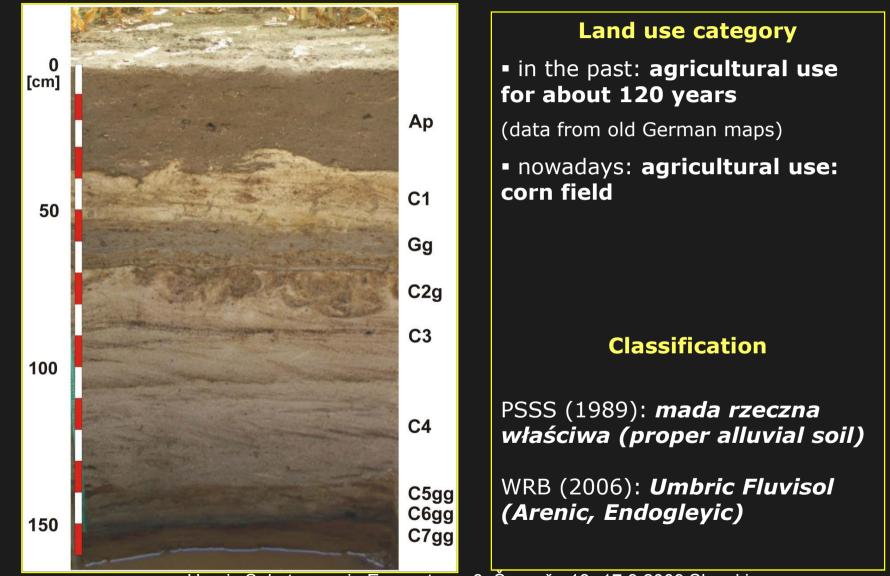
Fig. 4. Location of soil profiles on the map from the 2nd half of XIX century

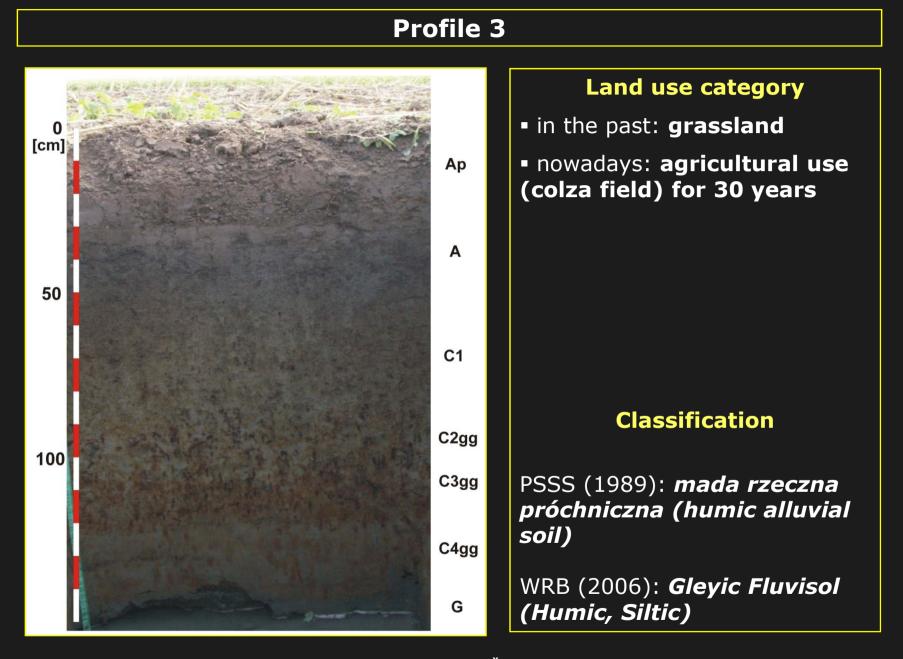
Fig. 5. Location of profile 3 on the map from the 2nd half of XIX century Humic Substances in Ecosystems 8, Šoporňa 13.-17.9.2009

Profile 1

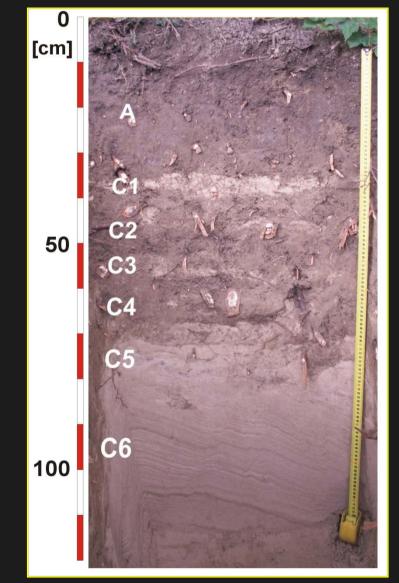
Land use category

in the past: probably willow
 riparian forest, than plantation of
 willow (human activity),


 nowadays: agricultural use: corn field (last 20–30 years)


Classification

PSSS (1989): *mada rzeczna właściwa (proper alluvial soil)*


WRB (2006): *Haplic Fluvisol* (Siltic, Hypogleyic)

Profile 2

Profile 4

Land use category

 in the past: probably elm-ash riparian forest,

 nowadays: remains of forest ("cluster" of trees) enclosed by corn field

Classification

PSSS (1989): *mada rzeczna próchniczna (humic alluvial soil)* WRB (2006): *Mollic Fluvisol*

Particle size analysis

	Sampling	Percer	ntage of fracti	ion in diameter	[mm]		
Genetic horizon	depth		sand	silt	clay	Textural classes*	
	[cm]	>2,0	2,0 - 0,05	0,05 - 0,002	<0,002	n skolovskedarenk aceseda	
	Prof	ile 1 - Hap	lic Fluvisol (Si	ltic, Hypogleyic)		
Ар	0 - 29	0	80	17	3	sandy silt	
C1	29-33	0	77	19	4	sandy silt	
C2	33 - 60	0	93	6	1	silty sand	
C3	60 - 65	0	38	51	11	loamy silt	
C4	65 - 80 (82)	0	66	25	9	sandy silt	
C5	80 (82) - 138	0	69	27	4	sandy silt	
C6	138 - 150	0	19	70	11	loamy silt	
C7g	150 - 165	0	58	34	8	silt	
C8	> 165	1	99	1	0	sand	
	Profil	e 2 - Umbr	ic Fluvisol (Ar	enic, Endogleyi	ic)		
Ар	0-38	2	88	10	6	light loam sand	
C1	38 - 55	1	99	0	1	sand	
Gg	55 - 70 (71)	0	56	33	11	loamy silt	
C2g	70 (71) - 86	1	96	2	2	sand	
C3	86 - 107	1	100	0	0	sand	
C4	107 - 137 (139)	1	100	0	0	sand	
C5gg	137 (139) - 146	2	100	0	0	sand	
C6gg	146 - 151	0	100	0	0	sand	
C7gg	>151	0	100	0	0	sand	
	Pi	rofile 3 - Gl	leyic Fluvisol (Humic, Siltic)			
Ар	0 - 40	0	21	57	22	heavy loam	
A	40 - 54	0	25	51	24	silt heavy loam	
C1	54 - 85	0	34	40	26	silt medium loam	
C2gg	85-106	1	45	39	16	loamy silt	
C3gg	106 - 118	0	55	33	12	sandy silt	
C4gg	118 - 138 (140)	0	71	21	8	sandy silt	
G	>138 (140)	0	68	20	12	silt heavy loam sand	

*according เมื่อเป็นเมืองสายเสี่ง เมื่อเป็นเป็น เมืองเป็น เมือง


Chemical and physicochemical properties of soils

Genetic	Sampling depth	oc	Nt	C/N	CaCO ₃ [%]	рН			
horizon	[cm]	[%]	[%]	om		H ₂ O	KCI		
Profile 1 - Haplic Fluvisol (Siltic, Hypogleyic)									
Ар	0 - 29	0,41	0,034	12	0,4	7,9	7,4		
C1	29 - 33	0,19	0,017	12	0,8	8,4	7,8		
C2	33 - 60	0,07	0,006	13	0,6	8,6	8,1		
C3	60 - 65	0,49	0,045	11	1,4	8,1	7,5		
C4	65 - 80 (82)	0,17	0,015	12	0,8	8,5	7,9		
C5	80 (82) - 138	0,27	0,020	13	1,2	8,4	7,7		
C6	138 - 150	0,38	0,035	11	1,6	8,4	7,6		
C7g	150 - 165	0,25	0,022	11	1,2	8,4	7,7		
C8	> 165	n.d	n.d.		0,3	8,4	7,6		
	Profile 2 -	Umbric	Fluvisol (A	renic, End	dogleyic)				
Ар	0 - 38	0,56	0,054	10	< 0,2	6,7	5,9		
C1	38 - 55	n.d.	n.d.		0,0	7,5	6,6		
Gg	55 - 70 (71)	0,45	0,043	10	0,0	7,4	6,1		
C2g	70 (71) - 86	0,06	0,006	10	0,0	7,6	6,5		
C3	86 - 107	n.d.	n.d.		0,0	7,8	7,2		
C4	107 - 137 (139)	n.d.	n.d.		0,0	8,0	7,3		
C5gg	137 (139) - 146	n.d.	n.d.		0,0	7,9	6,8		
C6gg	146 - 151	n.d.	n.d.		0,0	8,1	7,2		
C7gg	>151	n.d.	n.d.		0,0	8,0	7,0		

n.d. - nen determined OC - organic carbon Nt - total nitrogen Humic Substances in Ecosystems 8, Soporňa 13.-17.9.2009 Slovakia

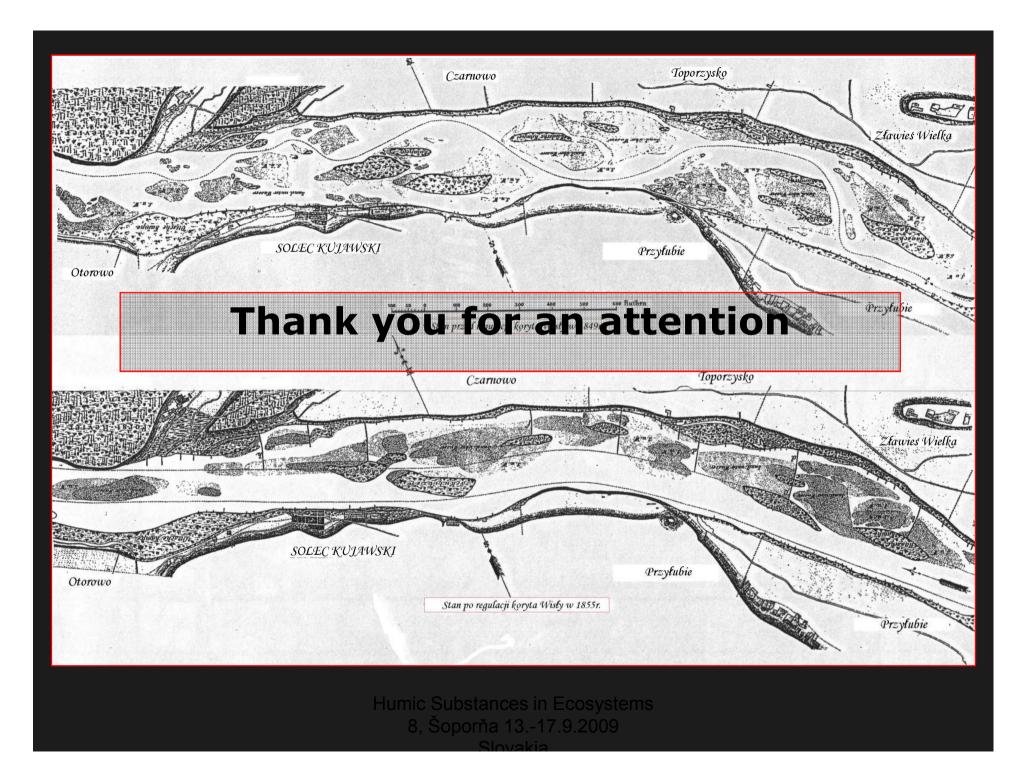
Chemical and physicochemical properties of soils

Genetic	Sampling depth	oc	Nt	C/N	CaCO₃ [%]	рН			
horizon	[cm]	[%]	[%]			H ₂ O	KCI		
Profile 3 - Gleyic Fluvisol (Humic, Siltic)									
Ар	0 - 40	3,03	0,324	9	0,2	7,2	6,4		
A	40 - 54	2,12	0,211	10	0,3	8,1	7,1		
C1	54 - 85	0,52	0,058	9	0,8	8,1	7,3		
C2gg	85 - 106	0,25	0,022	11	2,0	8,2	7,5		
C3gg	106 - 118	0,23	0,017	13	0,0	7,9	7,1		
C4gg	118 - 138 (140)	0,17	0,016	11	0,0	7,8	6,7		
G	>138 (140)	0,23	0,021	11	0,0	7,0	5,9		
Profile 4 - Mollic Fluvisol									
A	0 - 33	3,17	0,279	11	3,0	7,5	7,1		
C1	33 - 38	0,72	0,075	10	1,5	8,0	7,4		
C2	38 - 43	1,38	0,134	10	1,4	8,0	7,2		
C3	43 - 58	1,25	0,110	11	1,5	8,1	7,2		
C4	58 - 70	0,98	0,098	10	0,9	8,1	7,3		
C5	70 - 75	0,11	0,013	8	0,2	8,3	7,5		
C6	>75	n.d.	n.d.		0,2	8,2	7,2		

Fig. 6. Location of transect in lower part of flooded area

Point	00	Nt	CINI	pН		
Foint	[%]	[%]	C/N	H ₂ O	KCI	
A1	8,26	0,573	14	6,9	6,7	
A2	4,98	0,431	12	7,3	7,1	
A3	4,04	0,365	11	7,5	7,2	
A4	5,89	0,466	13	6,9	6,7	
A5	2,09	0,198	11	8,0	7,4	
A6	2,11	0,203	10	8,1	7,4	
A7	2,19	0,203	11	8,0	7,4	
A8	3,15	0,256	12	7,9	7,4	

Fig. 7. Properties of soil samples from the transect


Humic Substances in Ecosystems

8, Soporňa 13.-17.9.2009

Slovakia

Conclusions

- Organic matter content can be a simple indicator of the alluvial soils development. It gives informations about the pedogenesis conditions.
- Two generations of alluvial soils can be distinguished in the fllooded area of the floodplain. First one concerns soils which had developed before the Vistula River channel regulations in the 2nd half of XIX century. The second one encompasses soils developed after incorporation of "river islands" to the old part of floodplain (anthropogenic phase).
- Despite of the different time of pedogenesis the alluvial soils of flooded and non-flooded part of the floodplain are characterized by diversifications of organic matter content. It indicates a large influence of other soil forming factors (humidity, flora, human activity).
- Soils of the incorporated "river islands" are characterized by deepen humus horizon (effect of ploughing) and low organic matter content (<0,5% OC). It indicates the need of detailed investigations focused on the trophic potential, position in the flooded area ecosystem and possible soil degradation.

