

STRUCTURE AND PROPERTIES OF COMMERCIAL HUMATES FROM COALIFIED MATERIALS, PEAT AND SAPROPEL

Olga Yakimenko, Alexey Izosimov

Soil Science Department, Moscow State University, Russia

"Humic Substances in Ecosystems 8" International Scientific Conference Šoporňa, Slovakia, 13 - 17th September 2009

Humates: areas of use

- Plant growth stimulators
- Landscape architecture, gardening, golf courses, stadiums, parks, gardens, and lawns
- Humic-coating of mineral fertilizers
- Anti-stress additives for plants treated with chemical plant protection products
- Biotechnologies
- Remediation of polluted territories
- Fodder additives for livestock, fish, and poultry
- Dietary supplement for human
- Additive for medical and cosmetic industry

Specifics of humic resources

Source materials of studied HUM products

Source of HUM	Abbreviation of	Amount of samples		
	HUM-product			
Brown coal	BC	3		
Leonardite	Le	4		
Lignite	Li	3		
Humalite		3		
Peat	Pe	3		
Sapropel	Sa	2		
Organic Waste	Ow	2		

Main properties of humates

рΗ

Ash, %

Content of elements in HUM' ash, mg/g

Source	Na	К	Fe	Mn	Cu	Zn
Ре	130	6	39,5	0	0,12	0,06
	11	73	9,3	0,04	0,44	0,05
	31	151	11,5	0,04	0,69	0,06
Sa	31	27	7,6	0,07	0,04	0,02
Sa	62	62	4,9	0,09	0,05	0,03
	15	2	0,5	0,01	0,02	0,02
BC	22	86	9,6	0,04	0,09	0,09
	33	2	2,2	0,09	0,04	0,04
Hu	33	12	0,6	0,01	0,03	0,02
	24	55	1,1	0,05	0,02	0,02
	30	15	0,6	0,01	0,02	0,02
Le	16	120	1,1	0,04	0,02	0,03
	13	50	4,6	0,04	0,02	0,02
	21	4	1,0	0,04	0,03	0,04
	7	26	2,0	0,01	0,02	0,02
Li	9	4	0,4	0,01	0,01	0,01
	23	70	0,5	0,03	0,03	0,01
	10	35	0,6	0,01	0,03	0,01
Ow	35	16	0,3	0,03	0,00	0,05
Ow	29	17	0,1	0,03	0,03	0,05

Total C, N and S content

Box plot of TEC in HUM, %

Box plots of C_{HA} and C_{FA} contents

Box plots of C_{HA}: C_{FA} ratios

Elemental content of HA from HUM

HUM As	Ach %	Wt %, ash-free				
	A511, 70	C,%	N,%	Н,%	S,%	O,%
BC	3,4	♦ 61,2	2,2	4,1	1,6	31,0
Le	10,6	59,3	2,1	4,7	1,6	32,3
Ре	3,6	48,7	2,7	5,2	1,6	41,9
Sa	4,0	55,6	▼ 3,4	5,4	2,1	♥ 33,4
OW	4,2	57,9	0,9	5,5	7,6	28,0

Functional groups in HA from HUM

ним	Total acid, mM (+)/100g	(COOH), mM (+)/100g	(OH _{Ph}), mM (+)/100g
BC	444	264	180
Le	465	252	213
Ре	459	258	201
Sa	1035	274	761
ow	359	105	254

IR-spectra

Laser fluorescence spectra of HUM solutions

Auxin-like effect of HUM of different origin

Auxin-like effect of HUM of different origin

Influence on soil microbial community

"Community level physiological profiling" ("Eco-log" system, Gorlenko, 2005)

Functional biodiversity coefficients

•Vitality index G

G= (N / Nmax)/d,

Nmax is total number of test-substrates, 47

N is number of substrates consumed (index of diversity)

d –rank distribution coefficient, measure of microbial system disturbance

Influence on soil microbial community

Conclusions

- Among chemical parameters C and N contents may be useful to distinguish HUM products by OM origin. The pattern is also fits for HA-HUM.
 - C: Pe~BC~Le (35-45%) Sa~Hu~Li (30-35%)
 - N: Pe~Sa (0.5-5%) BC, Le, Hu, Li ~OW (0.3-1.3%)
- By humification parameters HA/FA HUM can be segregated by source:

BC – Pe - OW

- Fluorescence spectra is a useful tool to monitor the HUM structure.
- Physiological activity of HUM is unequal and depends more on the technology of their production then on organic matter origin.
- HUM demonstrate certain influence on soil microbial community. Positive effect was revealed at concentrations 10-100 mg\l, whereas at low and high concentrations a disturbance of microbial system was observed.

Acknowledgments

- Russian Foundation for Basic Research;
- Dr Mikhael Gorlenko for CLPP;
- Dr Peter Volkov for fluorescence measurements

